87 research outputs found

    Flexible Gating of Contextual Influences in Natural Vision

    Get PDF
    An appealing hypothesis suggests that neurons represent inputs in a coordinate system that is matched to the statistical structure of images in the natural environment. I discuss theoretical work on unsupervised learning of statistical regularities in natural images. In the model, Bayesian inference amounts to a generalized form of divisive normalization, a canonical computation that has been implicated in many neural areas. In our framework, divisive normalization is flexible: it is recruited only when the image is inferred to contain dependencies, and muted otherwise. I particularly focus on recent work in which we have applied this approach to understanding spatial context effects in visual cortical processing of natural inputs

    Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics

    Get PDF
    Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience

    A saliency-based bottom-up visual attention model for dynamicscenes analysis

    Get PDF
    This work proposes a model of visual bottom-up attention for dynamic scene analysis. Our work addsmotion saliency calculations to a neural network model withrealistic temporal dynamics [(e.g., building motion salienceon top of De Brecht and Saiki Neural Networks 19:1467–1474, (2006)]. The resulting network elicits strong transientresponses to moving objects and reaches stability withina biologically plausible time interval. The responses arestatistically different comparing between earlier and latermotion neural activity; and between moving and non-movingobjects. We demonstrate the network on a number of syn-thetic and real dynamical movie examples. We show thatthe model captures the motion saliency asymmetry phenom-enon. In addition, the motion salience computation enablessudden-onset moving objects that are less salient in the staticscene to rise above others. Finally, we include strong consid-eration for the neural latencies, the Lyapunov stability, andthe neural properties being reproduced by the mode

    Natural Sound Statistics and Divisive Normalization in the Auditory System

    No full text
    We explore the statistical properties of natural sound stimuli preprocessed with a bank of linear filters. The responses of such filters exhibit a striking form of statistical dependency, in which the response variance of each filter grows with the response amplitude of filters tuned for nearby frequencies. These dependencies may be substantially reduced using an operation known as divisive normalization, in which the response of each filter is divided by a weighted sum of the rectified responses of other filters. The weights may be chosen to maximize the independence of the normalized responses for an ensemble of natural sounds. We demonstrate that the resulting model accounts for non-linearities in the response characteristics of the auditory nerve, by comparing model simulations to electrophysiological recordings. In previous work (NIPS, 1998) we demonstrated that an analogous model derived from the statistics of natural images accounts for non-linear properties of neur..
    • …
    corecore